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Abstract 

In this paper, a general SEI epidemic model is considered with nonlinear  
incidence rate and uniform reproduction rate more general than those in the 
literature. Disease-free and endemic points are discussed with their stabilities. 
Hopf bifurcation and periodic solution are studied. Numerical discussion is given 
to show the effects of changing parameters of the system. 

1. Introduction 

In this paper, we are mainly concerned with a generalized SEI 
epidemic system of the form 
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( ) ( ) ( ) ( ) ,,,21 XNDNN
Y

N
XNfYWXNBdt

dX −−ρ++= νν  

( ) ( ) ,,, WNDWNN
Y

N
XNfdt

dW −ε−=  (1) 

( ) ( ) ( )[ ] ,1 2 YNDYNBdt
dY +α−ρ−= ν  

( ) ( ) ( ) .21 NNDYYWXNBdt
dN −α−++= νν  

Where ( ) ( ),, tWtX  and ( )tY  are the number of individuals, who are 

susceptible, exposed, and infectious, respectively, in the population of size 

( )tN  and ( )NN
Y

N
Xf ,,  represent a generalized incidence. The number 

of new cases per unit time. ( ) ( )YWXNB 21 νν ++  is the rate of newborns 

in population, Yα  is the disease-related death rate, ( )NB  ( ) Y21 νρ−  

expresses the flow of vertically infected new borns into the infectious 
class, ρ  is the fraction not infected, and 1ν  and 2ν  represent reduced 

reproduction parameters. In this paper, we consider an exponential 
demographic structure at which ( ) bNB =  and ( ) .dND =  Since the 

population size grows exponentially in the case, who the net growth rate 
dbr −=  is positive. Here b is the birth rate, d is the death rate, α  is the 

rate that the infective population become recovered, and ε  is the rate 
that the exposed population become infective.  

We suppose that the non-linear incidence ( )NISf ,,  satisfies the 

following conditions for all :0,, ≥NIS  

( ) ( ) ;0,,c1 ≥NISf  

( ) ;0,,c2 ≥
∂
∂

∂
∂

∂
∂

N
f

I
f

S
f  

( ) ( ) ( ) ( ) ;00,,,0,,,0c3 === ISfNSfNIf  

( ) rdb ,,,c4 ε  are positive and α  is nonnegative parameter. 
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2. Main Results 

We first consider the SEI model given in system (1) with uniform 
reproduction ( ).121 == νν  This model has no vertical transmission, 

( )1,i.e. =ρ  in terms of ( ) ( )
( )tN
tXtS =  and ( ) ( )

( ) .tN
tYtI =  This leads to 

system 

( ) ( ) ;,,1 ISNISfSbdt
dS α+−−=  

 ( ) ( ) ;1 IIbSdt
dI α−+α+ε−−ε=  (2) 

 ( ) .NIrdt
dN α−=  

Theorem 1. Let U be the region defined by {( ) ISRNISU ,,,, 3
+∈=  

},0,1,0 ∞<≤≤+≥ NIS  then we have the following result occurs with 

respect to system (2): 

(i) U is positively invariant. 

(ii) All solutions of the system (2) with initial values in 3
+R  are 

eventually uniformly bounded and attracted into the region. 

(iii) System (2) is dissipative. 

Proof. Since by the third equation of (2), we have 

( ) ,exp dsIrNN
t

t

α−= ∫  

then .0 ∞<≤ N  

Moreover by (2), we have 

( ) ( ) ( ) ( ) ( ) .,,1 IIbISNISfSbdt
ISd α−+α+ε−α+−−ε+=+  
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In view of ( ),c1  we have 

( ) ( ) ( ) ( ) ISIIIbSbdt
ISd α+α+α−+ε−−ε+≤+ 21  

( )( ) ( ) .1 IEIbSb α−+ε−−ε+<  

But since ISE −−= 1  and ,0>E  it follows that 

( ) ( ) ( )( ).1 ISbdt
ISd +−ε+<+  

Thus ( ) ( ( )) ( ) ( ).exp11 ttbISIS −+ε−+−−<+  

Thus, ( ) ,1suplim ≤+∞→ ISt  i.e., the solutions of system (2) are 

uniformly bounded, which implies that U is positively invariant and the 
dissipativity of system (2) is proved (see [6]). 

The region U in the SIN space system (2) always has the disease-free 

equilibrium ( )0,0,1≡P  and has an interior equilibrium ( ,,11 α/−= rvP  

),2N  where ( ) vdrNrvf /+=
α/− 1,,1   and ( ) ( )

ε
+α+ε

α
=/

drv  (see [4]). 

Theorem 2. The disease-free equilibrium P  of (2) is unstable. 

Proof. Since the Jacobian of the system (2) is 

( ) ,
0

02J


















α−α−
α−+α+ε−ε−

∂
∂−

∂
∂−αα+

∂
∂−−

=
IrN

Ib
N
f

I
fSIS

fb
 

the characteristic equation at ( )0,0,1=P  is 

( ) [ ( ( ) ) ( ) ( ( ) )S
fbbbS

fr
∂

∂
++α+ε++α+ε+

∂
∂

λ+λλ−
0,0,120,0,12  

( ( ) ) ] .00,0,1
=ε

∂
∂

−α+ I
f  
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The characteristic roots are 

( ( ) ) ( ( ) ) ( )
.2

0,0,1440,0,120,0,1
and

2

3,21
ε

∂
∂

+αε−
∂

∂
−α+ε±+α+ε+

∂
∂

−
=λ=λ I

f
S

fbS
f

r  

Since ,0>r  then P  is unstable. This completes the proof. 

Theorem 3. All solution paths in U on the 0=N  plane approach the 
equilibrium ( ).0,0,1P  

Proof. Consider the Lyapunov function 

 ( ) ;bISIbEV +ε−ε=ε++ε=  

 dt
dIbdt

dS
dt
dV +ε−=  

( ) ( ).,, NISfIIbbIS +α−+α+ε−εα−=  

In the 0=N  plane, ( ) .0≤α−+α+ε−εα−= IIbbISdt
dV  

The largest positively invariant set of the subset, where 0=dt
dV  is 

the equilibrium ( ),0,0,1P  so that all paths in the 0=N  plane 

approach 1P  by the La salle theorem [17]. 

The following theorem gives sufficient conditions for the existence of 
periodic solutions. 

Theorem 4. The system (2) has a periodic solution in the 
neighborhood of ,1P  if 

(i) 
( )

,
,,1

2
1

rS

Nrvf
d >

∂
α/−∂

++α+ε  

(ii) ( ) [ ( ) ( ) ( ) ]211 12 AAdrdvArd ε−+−+α+ε+/−εα+−+α+ε  

,31ANαε=  
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where 

( ) ( ) ( )
.

,,1
,

,,1
,

,,1 1
3

1
2

1
1 N

Nrvf
AI

Nrvf
AS

Nrvf
A

∂
α/−∂

=
∂
α/−∂

=
∂
α/−∂

=  

Proof. For the endemic point ( ),,,1 11 NrvP
α/−=  the characteristic 

equation is 

,032
2

1
3 =+λ+λ+λ aaa  

where 

( )
,

,,1
2

1
1 S

Nrvf
rda

∂
α/−∂

+−+α+ε=  

( ( )
( )

) ( ) (
( )

),
,,1,,1

1
11

2 S

Nrvf
drdI

Nrvf
va

∂
α/−∂

+−+α+ε+
∂
α/−∂

−/−αε=  

( )
.

,,1 1
13 N

Nrvf
Na

∂
α/−∂

αε=  

Since by (i), we have 01 >a  and .03 >a  

Hence Hopf bifurcation occurs at the neutral stability surface −21aa  

,03 =a  see [14]. 

This leads to ( ) [ ( ) ( ) ( )11 12 AdrdvArd +−+α+ε+/−εα+−+α+ε  

] ,322 ANA αε=ε−  

where  

( ) ( ) ( )
.

,,1
,

,,1
,

,,1
3

1
2

1
1

1
AN

Nrvf
AI

Nrvf
AS

Nrvf
=

∂
α/−∂

=
∂
α/−∂

=
∂
α/−∂

 

Thus under (i) and (ii), we conclude that system (2) has a periodic solution 
in the neighborhood of .1P  
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3. A Special Case 

In this section, we consider the model (2) in the special form of 
( ) ( ).,,, SINHNISf β=  

Assume that the nonlinear function ( )ISH ,  satisfies the following 
conditions for all :0, ≥IS  

( ) ( ) ;0,c5 ≥ISH  

( ) ;0and,0c6 ≥
∂
∂≥

∂
∂

I
H

S
H  

( ) ( ) ( ) .00,,0c7 == SHIH  

The model (2) takes the form 

 ( ) ( ) ;,1 ISSINHSbdt
dS α+β−−=  

( ) ( ) ;1 IIbSdt
dI α−+α+ε−−ε=  (3) 

( ) .NIrdt
dN α−=  

Theorem 5. Let U be a region defined as in Theorem 1, then 

(i) U is positively invariant. 

(ii) All solutions of system (3) with initial values in 3
+R  are eventually 

uniformly bounded and attracted into the region U. 

(iii) The system (3) is dissipative. 

The region U in SIN space system (3) always has a disease-free 

equilibrium ( )0,0,1=P  and (
( )

).
,1

,,11

α/−β

+/
α/−= rvH

rvdrvP  Note that 

as ,1→/v  the value ( ) 0,1 =
α/− rvH  implies that 1P  approaches the 

pseudo equilibrium ( ).,,02 ∞
α

= rP  
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The following theorem shows that the disease-free equilibrium P  is 

unstable. 

Theorem 6. The disease-free equilibrium P  of (3) is unstable. 

Proof. Since the Jacobian of the system (3) is 

( )
( )

( )
,

0
02

,
J



















α−α−
α++α+ε−ε−

β−α+
∂
∂β−α+

∂
∂β−−

=
IrN

Ib
ISHSI

HNIS
HNb

 

then the characteristic equation at ( )0,0,1P  is 

( ) ( )( ) ( ) .0=λ++ελ+α+λ− bbr  

The eigenvalues are ( ),,0 α+−> br  and ( ).b+ε−  

Then ( )0,0,1P  is unstable saddle point. 

Theorem 7. All solution paths in U on the 0=N  plane approach the 
equilibrium ( ).0,0,1P  

Proof. The proof is the same as in Theorem 3. 

Theorem 8. The system (3) has a periodic solution in the 
neighborhood of ,1P  if 

(i) ( ) ;2 1
3

rAA
rvdd >

+/++α+ε  

(ii) ( ( ) ) [ ( ) ( )rdvAA
rvdrd −+α+ε+/−εα

+/+−+α+ε 12 1
3

  

( ( ) ) ( ) ] ( ) ;2
3

1
3

αε+/=
+/ε−

+/+× rvdAA
rvdAA

rvdd  

where ( ) ( ) ( ).,,,,,
113

11
2

11
1 ISHAI

ISHAS
ISHA =

∂
∂

=
∂

∂
=  

Proof. The proof is similar to the proof of Theorem 4. 
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4. Numerical Example 

In this section, we consider a special form of the above systems and 
study numerically their behavior according to the values of parameters. 
First, we consider ( ) ( ) .,,, NSISINHNISf β=β=  So, the systems take 

the form 

 ( ) ;1 ISSINSbdt
dS α+β−−=  

( ) ( ) ;1 IIbSdt
dI α−+α+ε−−ε=  (4) 

  ( ) ;NIrdt
dN α−=  

(where XYβ  is called the simple mass action incidence). Using fourth 

order Runge-Kutta method and consider the parameter values ,5=ε  

,05.0,55.0,10 ===β db  and ,5=α  (these values are consistent with 

those used in [4]). The projection of the solution of Equation (4) in 3R  
space and time response of ( ),tI  when the initial conditions are taken to 

be ,2.0,4.0 == IS  and 1=N  (see Figure 1). 
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(a) The projection of the solution of Equation (4) in .3R  

 
(b) Time response of ( ).tI  

Figure 1 

To study the effect of parameter ,α  we fixed the other parameters we 
found that the projection of solution has three different cases, that is, (a) 
chaotic attractor, (c) limit cyclic, and (e) spiral focus. Figure 2 gives the 

projection of solution of Equation (4) in 3R  space and time response of I, 
when the initial conditions are taken to be ,2.0,4.0 == IS  and 

1=N  (see Figure 2). Let ,05.0,55.0,10,5 ===β=ε db  and ,9=α  
.3.3,2.12  
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(a) Chaotic attractor for .9=α  

 
 

 

(b) Time response of ( )tI  for .9=α  
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(c) Limit cyclic for .2.12=α  

 

 
 

 
(d) Time response of ( )tI  for .2.12=α  
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(e) Spiral focus for .3.3=α   

 

(f) Time response of ( )tI  for .3.3=α  

Figure 2 

We can also get different cases similar to previous cases as ,, bε  and 
d are parameters, but with different value. 
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5. Conclusion 

In this paper, we discussed a general SEI model and we introduced a 
special form numerically by using fourth order Runge-Kutta method 
through Matlab program. The parameters affect on the solution behavior, 
for some values of parameters are found. We get asymptotically stable 
solution (Figure 2(e)), other value we have periodic solution (Figure 2(c)), 
and chaotic attractor (Figure 2(a)). The obtained results are consistent 
with those in [5]. 
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