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Abstract

In this paper, a general SEI epidemic model is considered with nonlinear
incidence rate and uniform reproduction rate more general than those in the
literature. Disease-free and endemic points are discussed with their stabilities.
Hopf bifurcation and periodic solution are studied. Numerical discussion is given
to show the effects of changing parameters of the system.

1. Introduction

In this paper, we are mainly concerned with a generalized SEI

epidemic system of the form
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% = B(N)(X +v;W + pvyY) - Nf(%, % N)-D(N)X,
L~ Nf(5s 37+ N) = eW - DVW, W
% = B(N)(1 - pvsY - [0 + D(N)]Y

‘Z_]Z’ = B(N)(X + W +vyY) - aY — D(N)N.

Where X(¢), W(¢), and Y(¢) are the number of individuals, who are

susceptible, exposed and infectious, respectively, in the population of size

N(¢) and f( N) represent a generalized incidence. The number

NN

of new cases per unit time. B(N)(X +v;W +v3Y) is the rate of newborns
in population, aY is the disease-related death rate, B(N) (1 - plyY

expresses the flow of vertically infected new borns into the infectious

class, p is the fraction not infected, and v; and vy represent reduced

reproduction parameters. In this paper, we consider an exponential
demographic structure at which B(N)=0b and D(N)=d. Since the

population size grows exponentially in the case, who the net growth rate
r = b —d 1s positive. Here b is the birth rate, d is the death rate, o 1is the
rate that the infective population become recovered, and ¢ is the rate

that the exposed population become infective.

We suppose that the non-linear incidence f(S, I, N) satisfies the
following conditions for all S, I, N > 0:

(Cl)f(S, I, N)Z 0

o of of .
(e2) 35 31" aw 2

(CS)f(07 I9 N):f(S7 0, N):f(s’ I’ O):O

(cq) &, b, d, r are positive and o is nonnegative parameter.
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2. Main Results

We first consider the SEI model given in system (1) with uniform

reproduction (v; = vy =1). This model has no vertical transmission,

X(t) Y(t)

(ie., p=1) in terms of S(t) = NG) and I(t) = NGO This leads to
system
% — b1 - 8)- (S, I, N) + olS;
%=8(1—S)—(8+0L+b—0.])]; 2)
dN _
W = (7‘ CX,I)N

Theorem 1. Let U be the region defined by U ={(S, I, N)e R, S, I
>0,S+1<1,0< N < w}, then we have the following result occurs with

respect to system (2):

(1) U is positively invariant.

(1) All solutions of the system (2) with initial values in Rf are
eventually uniformly bounded and attracted into the region.

(111) System (2) is dissipative.

Proof. Since by the third equation of (2), we have

t
N =N, expj(r - al)ds,
L

then 0 < N < oo,

Moreover by (2), we have

d(S + 1)

T =b+e)1-8)-f(S, I, N)+alS - (e +a+b-al)l
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In view of (c; ), we have

d(S +I)
dt

<(b+e)1-8)-(c+b) —al +al?+alS
<(b+e)1-S)-(e+b) -0alE.
But since E =1-S -1 and E > 0, it follows that

d(S + 1)
—g < b+e)1—-(S+1)).
Thus (S+1)<1-(1-(S, +1,))exp— (¢ +b)(t —t,).

Thus, limsup,_,,(S + ) <1, ie. the solutions of system (2) are

uniformly bounded, which implies that U is positively invariant and the

dissipativity of system (2) is proved (see [6]).
The region U in the SIN space system (2) always has the disease-free

equilibrium P, =(1,0,0) and has an interior equilibrium P, = (1—w,§,
Ny), where f(1-y, — Nl)—r+dw andw—(—)(£+a+d)(see[4])

Theorem 2. The disease-free equilibrium P, of (2) is unstable.

Proof. Since the Jacobian of the system (2) is

_p_ o _o _of
b-ggtd ol oN

J = —-€ —(e+a+b-2al) 0 |,
0 —aN r—ol

the characteristic equation at P, = (1, 0, 0) is

of(1, 0, 0)

(’"_X)DMQ+7»(#+8+0L+2b)+(8+ourb)(bJraf(1 0, 0))

of (1, 0, 0)) 1o,

+ (a0 - e
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The characteristic roots are

_9f(1,0,0)
oS

of(1, 0, 0)
oS

of(1, 0, 0)
ol

+a+a+2b)i\/(s+a—
2

Y —dog+4 €

A =randig s =

Since r > 0, then P, is unstable. This completes the proof.

Theorem 3. All solution paths in U on the N = 0 plane approach the
equilibrium P,(1, 0, 0).

Proof. Consider the Lyapunov function
V=¢E+0b+e)l =¢-¢eS +0bI;

av _ . dS ,dl
dt T dt dt

= —ealS - b(e + o + b —al)I + f(S, I, N).

Inthe N = 0 plane, % = —ealS -ble+a+b—-al)l <O0.

The largest positively invariant set of the subset, where (le_‘t/ =0 1is
the equilibrium P,(1, 0, 0), so that all paths in the N =0 plane

approach P; by the La salle theorem [17].

The following theorem gives sufficient conditions for the existence of

periodic solutions.

Theorem 4. The system (2) has a periodic solution in the
neighborhood of P, if

r
af(l_w’a’ Nl)
oS

(1) e+o+2d + >,

@) (e+a+2d-r+ A ) eal —p)+ (e +a+d-r)(d+ A;) — Ay ]

= (XSNIA3,
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where

r r r
-y, = -y, = 1-v, -, N
of(1 -y, . Nyp) of(1 -y, o Ny) of(1 -y, o 1).

4 = oS » Az ol > A oN

Proof. For the endemic point P, = (1 -, r N; ), the characteristic
o
equation is
23+ alkz +agh+ag =0,

where

r
6f(1_w’ a’ Nl)
oS ’

ap =¢e+o+2d-r+

r
6f(1_w’ a’ Nl)
ol

r
af(l_l/j, a’ Nl)

)+(e+a+d-r)(d+ 35 ,

ag = &(a(l -y) -

of(1-v, 0, N1)
ON ’

as = oeNg

Since by (1), we have @; > 0 and a3 > 0.

Hence Hopf bifurcation occurs at the neutral stability surface a;a9 —
ag = 0, see [14].

This leads to (e + a +2d — 7+ Ay )[ea(l —-y)+ (e + o +d —7)(d + Ay)
—eAy] = aeNyAs,

where

r r r
8f(1_¢’a’Nl) 8f(1_w’a’Nl) 6f(1—l/7,a,N1)

28 ik ol i oN = 4s.

Thus under (1) and (i1), we conclude that system (2) has a periodic solution
in the neighborhood of P, .
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3. A Special Case

In this section, we consider the model (2) in the special form of

f(S, I, N)=BNH(I, S).

Assume that the nonlinear function H(S, I) satisfies the following

conditions for all S, I > 0:
(cs) H(S, I) > 0;
OH OoH
(06)% > O, and ﬁ > 0,
(c7) H(0, T) = H(S, 0) = 0.

The model (2) takes the form

% - b(1 - S)- BNH(I, S) + olS;
%:s(l—S)—(e+oc+b—aI)I; 3)
AN

W—(r (X,I)N

Theorem 5. Let U be a region defined as in Theorem 1, then

(1) U is positively invariant.

(11) All solutions of system (3) with initial values in Ri’ are eventually
uniformly bounded and attracted into the region U.

(111) The system (3) is dissipative.

The region U in SIN space system (3) always has a disease-free
dy+r

equilibrium P, = (1,0, 0) and P, = (1 -9, —, e

). Note that
(00

as ¥ — 1, the value H(1 -y, é): 0 implies that P, approaches the

pseudo equilibrium P, = (0, é, ).
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The following theorem shows that the disease-free equilibrium P, is

unstable.

Theorem 6. The disease-free equilibrium P, of (3) is unstable.

Proof. Since the Jacobian of the system (3) is

oH oH
—b—Nﬁg'ﬁ‘aI —NBW'FGS —BH(S, I)
J = -€ —(e+a+b)+2al 0 ,
0 - aN (r—ol)

then the characteristic equation at P,(1, 0, 0) is
(r-2M(GB+a)+r)(e+b+2)=0.
The eigenvalues are r > 0, — (b + a), and —(¢ + b).
Then P,(1, 0, 0) is unstable saddle point.

Theorem 7. All solution paths in U on the N = 0 plane approach the
equilibrium P.(1, 0, 0).
Proof. The proof is the same as in Theorem 3.

Theorem 8. The system (3) has a periodic solution in the
neighborhood of P, if

(i)a+a+2d+(dW+r)A1 >r;
Ag
(ii)(8+a+2d—r+(d‘f4+r)Al)[soc(l—w)+(£+oc+d—r)
3
dy +r dy +r

<+ (F5a) - o( 54 = (o + o

aH(SL Il )
oS

oH(S;, I
, Ag =M, Ag = H(Sy, ).

where A = ol

Proof. The proof is similar to the proof of Theorem 4.
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4. Numerical Example

In this section, we consider a special form of the above systems and
study numerically their behavior according to the values of parameters.
First, we consider f(S, I, N) = BNH(I, S) = BNSI. So, the systems take

the form
% = b(1 - S)-BSIN + alS;
%ZS@—S)—(&-‘:-OL-‘:-()—OLI)I; 4)
dN .
T = (r—aI)N,

(where BXY is called the simple mass action incidence). Using fourth
order Runge-Kutta method and consider the parameter values & = 5,
B =10,b = 0.55, d = 0.05, and o = 5, (these values are consistent with
those used in [4]). The projection of the solution of Equation (4) in R3
space and time response of I(z), when the initial conditions are taken to

be S, =04, I, =0.2, and N, =1 (see Figure 1).
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Iit) | s

(a) The projection of the solution of Equation (4) in R3.
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(b) Time response of I(t).

Figure 1

To study the effect of parameter o, we fixed the other parameters we

found that the projection of solution has three different cases, that is, (a)
chaotic attractor, (c) limit cyclic, and (e) spiral focus. Figure 2 gives the

projection of solution of Equation (4) in R3 space and time response of I,

when the initial conditions are taken to be S, =0.4, I, = 0.2, and
N, =1 (see Figure 2). Let ¢ =5, =10, b = 0.55, d = 0.05, and o = 9,
12.2, 3.3.
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(a) Chaotic attractor for o = 9.
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(b) Time response of I(t) for o = 9.
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(¢) Limit cyclic for a = 12.2.
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(d) Time response of I(¢) for a = 12.2.
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(e) Spiral focus for a = 3.3.
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(f) Time response of I(t) for o = 3.3.

Figure 2

|
350

400

35

We can also get different cases similar to previous cases as ¢, b, and

d are parameters, but with different value.
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5. Conclusion

In this paper, we discussed a general SEI model and we introduced a

special form numerically by using fourth order Runge-Kutta method

through Matlab program. The parameters affect on the solution behavior,

for some values of parameters are found. We get asymptotically stable

solution (Figure 2(e)), other value we have periodic solution (Figure 2(c)),

and chaotic attractor (Figure 2(a)). The obtained results are consistent
with those in [5].
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